Albert Einstein Her Şeyi Doğru Tahmin Etmiş

Tüm zamanların en iyi fizikçilerinden birisi olarak kabul edilen Albert Einstein’ın 20. yüzyılın başında ortaya attığı ve en ünlü teorisi olarak kabul edilen “Genel Görelilik Teorisi” doğrulandı.

Genel Görelilik Teorisi: Kütleye sahip olan bütün cisimler etrafındaki uzay-zaman dokusunu büker. Gezegen ve yıldız gibi diğer cisimler de bu bükülmeye yörüngelerini değiştirerek karşılık verir.

ABD’deki Michigan Üniversitesi’nden Dragan Huterer “Einstein’ın genel görelilik teorisi, büyük kütleli cisimlerin kendi yarattıkları kütleçekim alanındaki hareketlerini açıklıyor. Sahip olduğumuz en başarılı fizik teorilerinden biri” diyerek ekliyor:

Ancak hızlanan evrenin keşfi, genel göreliliğin belki de değiştirilmesi gerektiğine dair önerilere yol açtı.

Huterer ve ekip arkadaşları 2019’dan beri devam eden Karanlık Enerji Spektroskopik Enstrümanı (DESI) çalışmasının bulgularını inceleyerek bu teoriyi test etti.

Evrenin son 11 milyar yılına yayılmış yaklaşık 6 milyon galaksiye dair gözlemleri analiz eden bilim insanları, Einstein’in teorisini bugüne kadarki belki de en büyük sınavına soktu.

Henüz hakem denetiminden geçmeyen ve ön baskı sunucusu arXiv’de üç ayrı makale halinde yayımlanan bulgular, fizikçiyi haklı çıkardı.

Evrenin genişlemesinin yarattığı dışa doğru çekime karşı kütleçekimin bu galaksileri kozmik ağda bir araya getirme ve bu ağın zaman içinde evrimleşme şekli, Einstein’ın ünlü teorisi tarafından yapılan tahminlerle tam olarak uyumluydu.

Bilim insanları kütleçekimin daha büyük ölçeklerde davranışının değişip değişmediğini uzun zamandır merak ediyor.

Genel göreliliği temel alan standart kozmolojik modele göre evrenin çok küçük bir kısmı gözlemlenebilen maddeden oluşuyor. Yaklaşık yüzde 68’inin karanlık enerji ve yüzde 27’sinin de karanlık maddeden oluştuğu varsayılıyor.

Işıkla etkileşime geçmedikleri için gözlemlenemeyen bu iki şeyin doğası da tam olarak bilinmiyor. Karanlık maddenin özellikle evrenin ilk yıllarında galaksilerin oluşumunda büyük bir rol oynadığı, karanlık enerjinin de evrenin genişleme hızını arttırdığı öne sürülüyor.

Ancak bazı gözlemlerin standart modelin savunduklarıyla örtüşmemesi, itirazlara yol açıyor. Standart modele karşı çıkan bazı bilim insanları Değiştirilmiş Newton Dinamiği (Modified Newtonian Dynamics / MOND) teorisini destekliyor.

Bu teori, kütleçekimin evrenin her yerinde aynı şekilde işlemediğini savunuyor.

Yeni bulgular standart modelle çelişen gözlemleri tamamen açıklamıyor ancak MOND teorisine güçlü bir darbe vurduğu söylenebilir.

Araştırma ekibi ayrıca DESI bulgularının dinamik bir karanlık enerjiye işaret ettiğini söylüyor.

Dallas’taki Texas Üniversitesi’nden Mustapha Ishak-Boushaki, ortak liderliğini üstlendiği çalışma hakkında “Karanlık enerji dinamik ve zayıflıyor gibi görünüyor. Bu da sonsuza kadar genişlemesi gerekmeyen evrenin evriminin geleceğini değiştiriyor” diyerek ekliyor:

Karanlık enerjinin dinamik olduğuna dair güçlü ipucu, 1998’de evrenin ivmelenerek genişlediğinin keşfedilmesinden bu yana elde edilen en önemli bulgu.

Dünya çapından 900’den fazla araştırmacıyı bir araya getiren DESI projesi hâlâ devam ediyor. Tamamlandığı zaman neredeyse 40 milyon galaksiyi incelemesi hedeflenen projenin, evrenin en büyük gizemlerini aydınlatması bekleniyor.

(Kaynak: Independent Türkçe)

Paylaşın

Stephen Hawking’in Kara Delik Paradoksu Çözülmüş Olabilir

Yeni bir araştırma, kara deliklerin Albert Einstein’ın genel görelilik kuramının öngördüğü gibi özelliksiz, yapıdan yoksun varlıklar olmayabileceğini öne sürüyor.

1916 yılında ilk kez Karl Schwarzschild tarafından tanımlanan klasik kara delik modeli, kara delikleri iki temel özelliğe sahip olarak tasvir eder: tüm kütlenin yoğunlaştığı bir tekillik ve hiçbir şeyin, hatta ışığın bile kaçamadığı bir sınır olan olay ufku.

1970’lerde Stephen Hawking, olay ufkuna yakın kuantum etkilerinin uzay boşluğundan parçacıklar yaratılmasına yol açması gerektiğini keşfetti, bu süreç Hawking radyasyonu olarak bilinir. Bu radyasyon, kara deliğin kademeli olarak kütle kaybetmesine ve sonunda tamamen buharlaşmasına neden olurdu.

Paradoks, bu radyasyonun başlangıçta kara deliği oluşturan madde hakkında hiçbir bilgi taşımaması nedeniyle ortaya çıkar. Kara delik tamamen buharlaşırsa, bu bilgi sonsuza dek kaybolmuş gibi görünür ve bilginin korunması gerektiğini öne süren kuantum mekaniğinin ilkelerini ihlal eder. Bu çelişki, bilgi kaybı paradoksu olarak bilinir ve teorik fizikteki en önemli zorluklardan biridir.

Hakemli bilimsel dergi Physical Review D’de yayımlanan araştırmada, kara deliklerin aslında ‘donmuş yıldızlar’ adı verilen, soğumuş ve artık ışık veya ısı yaymayan yıldızlar olduğu öne sürüldü.

Kara delikler, bilimin kurallarına meydan okuyan ve birçok paradoksla ilişkilendirilen nadir gök cisimlerinden biri. Ancak yeni bir araştırma, kara delikler hakkında bilinen her şeyi değiştirebilecek bir hipotez öneriyor.

Hakemli bilimsel dergi Physical Review D’de yayımlanan araştırmada, kara deliklerin aslında “donmuş yıldızlar” adı verilen, soğumuş ve artık ışık veya ısı yaymayan yıldızlar olduğu öne sürüldü. Kara cüceler olarak da adlandırılan donmuş yıldızlar, bir yıldızın yaşam döngüsünün son aşaması anlamına geliyor.

Bilim insanları genellikle yıldızların kara cüce aşamasına ulaşmasının trilyonlarca yıl alacağına inanıyor. Ancak evren, sadece 13,7 milyar yaşında olduğundan henüz donmuş yıldızları olamayacağı tahmin ediliyor.

Yeni çalışmada ise araştırmacılar, donmuş yıldızlarla kara delikler arasındaki benzerlikleri detaylı bir şekilde analiz etti ve teorilerinin geleneksel kara delik modeliyle bağlantılı birçok paradoksu çözdüğünü belirtti. Bu hipotez doğrulanırsa kara delikler, ünlü fizikçi Albert Einstein’ın genel görelilik kuramının öngördüğü gibi özelliksiz, yapıdan yoksun varlıklar olmayabilir.

Kara delikler konusunda bilim camiası, Einstein’ın 1915’te ortaya koyduğu genel görelilik kuramını takip ediyor. Einstein’a göre, bir kara deliğin iki temel özelliği var. Birincisi, merkezinde tekillik olarak adlandırılan sonsuz yoğunlukta bir nokta olması. İkincisi ise kara deliğin hiçbir şeyin, ışığın bile kaçmasına izin vermeyen bir olay ufku olması.

Bu teori yaygın kabul görse de, bazı büyük sorunlarla karşı karşıya kalıyor. Örneğin, bildiğimiz fizik kurallarınca her şeyin bir sonu olmalı. Ayrıca bir diğer ünlü fizikçi Stephen Hawking’in radyasyon paradoksu, kara deliklerin radyasyon yayabileceğini, zamanla yavaşça kütle kaybedebileceğini ve sonunda tamamen buharlaşacağını öne sürüyor.

Bu da başka bir çelişkiyi ortaya çıkarıyor: Einstein hiçbir şeyin bir kara delikten kaçamayacağını öne sürdüğüne göre, bu nasıl mümkün olabilir? Ancak yeni araştırmanın yazarlarına göre, kara delikler donmuş yıldızlar, yani hem tekillikten hem de olay ufkundan yoksun nesneler olarak kabul edildiğinde tüm bu paradokslar çözülüyor.

‘Donmuş yıldızlar’ teorisi ne kadar mantıklı?

Yeni çalışmada araştırmacılar, kara deliklerin entropi ve termal radyasyon gibi termodinamik özelliklerinin teorik değerlerinin, donmuş yıldızlarınkine benzer olduğunu ortaya koydu.

İsrail’deki Ben-Gurion Üniversitesi’nde fizik profesörü ve çalışmanın ilk yazarı Ramy Brustein, Live Science’a yaptığı açıklamada, “Donmuş yıldızlar bir tür kara delik taklitçisidir: tekilliklerden arınmış, ufuk çizgisi olmayan ancak yine de kara deliklerin tüm gözlemlenebilir özelliklerini taklit edebilen ultra kompakt, astrofiziksel nesnelerdir,” dedi.

Ayrıca, bir olay ufkunun olmaması, radyasyonların ve parçacıkların kara delik olarak görülen nesnelerin sınırlarından kaçabileceğini gösteriyor. Bu da Hawking’in kara deliklerden çıkan ışık emisyonu hakkında söyledikleriyle örtüşüyor.

1970’lerde Stephen Hawking, olay ufkuna yakın kuantum etkilerinin uzay boşluğundan parçacıkların üretilmesine yol açtığını ve kara deliklerden kütle azaltacak bir ışıma sızması gerektiğini ortaya koymuştu. Bu fenomen bugün Hawking radyasyonu olarak adlandırılıyor.

Öte yandan, kara deliklerin gerçekten donmuş yıldızlar olduğunu teyit edecek deneysel bir kanıt yok. Bu da söz konusu hipotezi doğrulamak için daha fazla araştırma gerektiği anlamına geliyor.

(Kaynak: Euronews Türkçe)

Paylaşın

Bilim İnsanları Karanlık Enerjinin Kaynağını Bulmuş Olabilir

Bilim insanları, ilk kez ünlü fizikçi Albert Einstein tarafından ortaya atılan karanlık enerjinin kaynağı bulmuş olabilirler. Süper kütleli karadeliklerin karanlık enerjinin kaynağı olabileceğine dair bir ipucu keşfedildi.

Karanlık enerji, evreni sürekli genişlettiği ve galaksileri birbirlerinden uzaklaştırdığı varsayılan bir enerji türü.

Son 9 milyar yıl içinde ortaya çıkmış süper kütleli karadelikleri karşılaştıran gökbilimciler, bunların karanlık enerjinin kaynağı olabileceğine dair bir ipucu keşfetti.

Bulgulara göre çoğu büyük galaksinin merkezinde gizlenen bu devasa kara delikler, aynı zamanda evrenin genişlemesini sağlayan “motorlar” olabilir.

Karanlık enerji, evreni sürekli genişlettiği ve galaksileri birbirlerinden uzaklaştırdığı varsayılan bir enerji türü. Doğrudan gözlemlenemeği için “karanlık” diye nitelenen bu enerjinin varlığına dair dolaylı ipuçları mevcut.

Bilim insanları ilk kez ünlü fizikçi Albert Einstein’ın ortaya attığı bu enerjinin kaynağını uzun yıllardır arıyor.

The Astrophysical Journal ve The Astrophysical Journal Letters adlı bilimsel dergilerde yayımlanan son bulgular ise bilinen evrenin yüzde 68’ini oluşturduğu düşünülen bu gizemli enerjinin süper kütleli karadeliklerden kaynaklandığını öne sürüyor.

Birleşik Krallık’taki Rutherford Appleton Laboratuvarı’ndan astrofizikçi Chris Pearson, “Sonunda kozmologları ve teorik fizikçileri şaşırtan karanlık enerjinin kökeni için bir cevap bulduk” diye konuştu: Teorimiz, eğer doğruysa, tüm kozmolojide devrim yaratacak.

Karanlık enerji nasıl ortaya çıktı?

Geçen yüzyılda gökbilimciler, evrenin her zamankinden daha hızlı genişlediğini keşfetti.

Kendi başına hareket eden kütle çekim kuvvetinin kozmosu tavaş yavaş parçalaması beklendiği için bu keşif son derece şaşırtıcıydı.

Bilim insanları bu tutarsızlığı açıklamak için kütle çekim kuvvetine karşı koyacak kadar güçlü bir şeyin var olması gerektiğini öne sürdü.

Teoriye göre bu gizemli güç, evrendeki her şeyi hızla birbirinden daha da uzaklaştırıyordu. Buna karanlık enerji adı verildi.

Yeni araştırmada gökbilimciler, iki gökada kümesinin merkezindeki kara deliklerin kütlelerini karşılaştırdı.

Devasa kara deliklerin bir zamanlar olduklarından 7 ila 20 kat daha büyük hale geldiği tespit edildi.

Dahası araştırmacılara göre bu büyüme, kara deliklerin yıldızları içine çekmesi veya birbiriyle birleşmesi gibi sıradan kozmik olaylarla açıklanamayacak kadar fazla.

Kara deliklerin evrenle uyumlu bir şekilde büyüdüğünü öne süren ekip, bunların sürekli dışa doğru genişlemelerini sağlayan ve “vakum enerjisi” adı verilen varsayımsal bir karanlık enerji türüne dikkat çekti.

Buna göre kara delikler büyürken kozmosun da tüm dokusunu kendileriyle birlikte sürüklüyor.

Imperial College London’dan Astrofizikçi Dave Clements, “Bu gerçekten şaşırtıcı bir sonuç” ifadelerini kullandı: Kara deliklerin zaman içinde nasıl büyüdüğüne bakıyorduk. Ama kozmolojideki en büyük sorulardan birinin cevabını bulmuş olabiliriz.

(Kaynak: Independent Türkçe)

Paylaşın